DSC Investigations of the Phase Transitions of $[M(NH_3)_6](ClO_4)_2$ and $[M(NH_3)_6](BF_4)_2$, where M = Co and Cd

A. Migdał-Mikuli, E. Mikuli, S. Wróbel^a, and Ł. Hetmańczyk

Department of Chemical Physics, Faculty of Chemistry of the Jagiellonian University, ulica Ingardena 3, 30-060 Kraków, Poland

^a Department of Solid State Physics, M. Smoluchowski Institute of Physics, Jagiellonian University, ulica Reymonta 4, 30-059 Kralów, Poland

Reprint requests to Dr. A. M.-M.; E-mail: mikuli@trurl.ch.uj.edu.pl

Z. Naturforsch. **54 a,** 590–594 (1999); received August 13, 1999

Solid polymorphism of four compounds of the type $[M(NH_3)_6](XY_4)_2$, where $M = Co^{2+}$ or Cd^{2+} , and $XY_4 = ClO_4^-$ or BF_4^- has been studied at 100 - 300 K by DSC. One or two phase transitions of the investigated compounds have been found. For the compounds with M = Co the phase transitions have not yet been described in the literature. For the compounds with M = Cd the phase transition-temperature is in good agreement with the results obtained by NMR and EPR. Generally, for $[M(NH_3)_6](BF_4)_2$ compounds (M = Mg, Fe, Co, or Ni) the phase transition temperature T_{C1} is lower than that for the corresponding $[M(NH_3)_6](ClO_4)_2$, but for compounds with M = Cd it is higher. However, the enthalpy and entropy changes at the T_{C1} phase transitions of $[M(NH_3)_6](BF_4)_2$ are always lower than those for $[M(NH_3)_6](ClO_4)_2$. Moreover, for the compounds of this type a correlation between the transition temperature T_{C1} and the crystal lattice parameter T_{C1} has been found.

Key words: Phase Transitions; DSC Method; Chlorate(VII) and Tetrafluoroborate of Hexaaminacobalt(II) and Hexaaminacadmium(II).